## Carl Orff – O Fortuna Imperatrix Mundi

12 04 2009

Great cantata from Carl Orff, I think everybody knows that one – Carmina Burana.

11 04 2009

## Garrett Lisi: A beautiful new theory of everything

10 04 2009

Antony Garrett Lisi is a theoretical physicist best known for “An Exceptionally Simple Theory of Everything”. This TED talk is about that theory. Garrett explains how he find this theory. Garrett Lisi has proposed this new “theory of everything” a grand unified theory that explains all the elementary particles, as well as gravity.

9 04 2009

If you lost yourself in this post, I advise you to start in catamorphisms, then anamorphisms and then hylomorphisms.

Like I said before (in those posts) when you write an hylomorphism over a particular data type, that means just that the intermediate structure is that data type.

$\xymatrix@!=2.7cm {A \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & B \ar[d]^{rec_{[(h)]}}\\C \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & D \ar@/^{1cm}/[ll]^{in} \ar[d]^{rec_{(|f|)}}\\E & & F \ar[ll]^{f}\\}$

In fact that data will never be stored into that intermediate type $C$ or $D$. Because we glue the ana and cata together into a single recursive pattern. $A$ and $E$ could be some data type your function need. With this post I will try to show you more hylomorphisms over some different data types to show you the power of this field.

## Leaf Tree’s

The data type that we going to discuss here is the $LTree$. In Haskell we can represent $LTree$ as:

data LTree a = Leaf a | Fork (LTree a, LTree a)


Is just like a binary tree, but the information is just in the leaf’s. Even more: a leaf tree is a tree that only have leaf’s, no information on the nodes. This is an example of a leaf tree:
$\xymatrix@!=1cm {& & \bullet \ar@/^/[ld] \ar@/^/[rd] &\\& \bullet \ar@/^/[ld] \ar@/^/[rd] & & DATA\\DATA & & \bullet \ar@/^/[ld] \ar@/^/[rd]& \\& DATA & & DATA\\}$

To represent all the hylomorphisms over $Ltree$ we draw the following diagram:
$\xymatrix@!=2.7cm {A \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & B \ar[d]^{rec_{[(h)]}}\\Ltree~a \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & a + Ltree~a \times Ltree~a \ar@/^{1cm}/[ll]^{in} \ar[d]^{rec_{(|f|)}}\\E & & F \ar[ll]^{f}\\}$

The example I’m going to give is making the fibonacci function using a hylomorphism over this data type. If you remember the method I used before, I’m going to start by the anamorphism $[(h)]$. Before that I’m going to specify the strategy to define factorial. I’m going to use the diagram’s again, remember that type $1$ is equivalent to Haskell $( )$:

$\xymatrix@!=2.7cm {Integer \ar@/_{2.2cm}/[dd]^{[|add,fibd|]} \ar[rr]^{fibd} \ar[d]^{[(fibd)]} & & 1 + Integer \times Integer \ar[d]^{id + [(fibd)] \times [(fibd)]}\\Ltree~1 \ar[d]^{(|add|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + Ltree~1 \times Ltree~1 \ar@/^{1cm}/[ll]^{in} \ar[d]^{1 + (|add|) \times (|add|)}\\Integer & & \ + Integer \times Integer \ar[ll]^{add}\\}$

As you can see I’m going to use $Ltree~1$ as my intermediate structure, and I’ve already define the names of my gen functions $add$ to the catamorphism and $fibd$ to the anamorphism. The strategy I prefer, is do all the hard work in the anamorphism, so here the gen $fibd$ for the anamorphism is:

fibd n | n < 2     = i1   ()
| otherwise = i2   (n-1,n-2)


This function combined with the anamorphism, going to generate leaf tree’s with $n$ leaf’s, being $n$ the result of that fib.

Then we just have to write the gen $add$ for the catamorphism. This function (combined with the catamorphism) counts the number of leafs that a leaf tree have.

add = either (const 1) plus
where plus = uncurry (+)


The final function, the fibonacci function is the hylomorphism of those two defined before:

fib =  hyloLTree add fibd


Here is all the auxiliary functions you need to run this example:

inLTree = either Leaf Fork

outLTree :: LTree a -> Either a (LTree a,LTree a)
outLTree (Leaf a)     = i1   a
outLTree (Fork (t1,t2)) = i2    (t1,t2)

cataLTree a = a . (recLTree (cataLTree a)) . outLTree

anaLTree f = inLTree . (recLTree (anaLTree f) ) . f

hyloLTree a c = cataLTree a . anaLTree c

baseLTree g f = g -|- (f >< f)

recLTree f = baseLTree id f


## Lists

The lists that I’m going to talk here, are the Haskell lists, wired into the compiler, but is a definition exist, it will be:

data [a] = [ ] | a : [a]


So, our diagram to represent the hylomorphism over this data type is:
$\xymatrix@!=2.7cm {A \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & B \ar[d]^{rec_{[(h)]}}\\[C] \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + C \times [C] \ar@/^{1cm}/[ll]^{in} \ar[d]^{rec_{(|f|)}}\\E & & F \ar[ll]^{f}\\}$

The function I’m going to define as a hylomorphism is the factorial function. So, we know that our domain and co-domain is $Integers$, so now we can make a more specific diagram to represent our solution:

$\xymatrix@!=2.5cm {Integer \ar@/_{2.1cm}/[dd]^{[|mul,nats|]} \ar[rr]^{nats} \ar[d]^{[(nats)]} & & 1 + Integer \times Integer \ar[d]^{1 + [(nats)] \times [(nats)]}\\[Integer] \ar[d]^{(|mul|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + Integer \times [Integer] \ar@/^{1cm}/[ll]^{in} \ar[d]^{1 + (|mul|) \times (|mul|)}\\Integer & & 1 + Integer \times Integer \ar[ll]^{mul}\\}$

As you can see I’m going to use $[Integer]$ to represent my intermediate data, and I’ve already define the names of my gen functions $mul$ to the catamorphism and $nats$ to the anamorphism. Another time, that I do all the work with the anamorphism, letting the catamorphism with little things to do (just multiply). I’m start to show you the catamorphism first:

mul = either (const 1) mul'
where mul' = uncurry (*)


As you can see the only thing it does is multiply all the elements of a list, and multiply by 1 when reach the $[]$ empty list.

In the other side, the anamorphism is generating a list of all the elements, starting in $n$ (the element we want to calculate the factorial) until 1.

nats = (id -|- (split succ id)) . outNat


And finally we combine this together with our hylo, that defines the factorial function:

fac = hylo mul nats


Here is all the code you need to run this example:

inl = either (const []) (uncurry (:))

out []    = i1 ()
out (a:x) = i2(a,x)

cata g   = g . rec (cata g) . out

ana h    = inl . (rec (ana h) ) . h

hylo g h = cata g . ana h

rec f    = id -|- id >< f


## Binary Tree’s

Here, I’m going to show you the hanoi problem solved with one hylomorphism, first let’s take a look at the $Btree$ structure:

data BTree a = Empty | Node(a, (BTree a, BTree a))


So, our generic diagram representing one hylomorphism over $BTree$ is:
$\xymatrix@!=2.7cm {A \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & B \ar[d]^{rec_{[(h)]}}\\BTree~a \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + a \times~BTree~a \times~BTree~a \ar@/^{1cm}/[ll]^{in} \ar[d]^{rec_{(|f|)}}\\E & & F \ar[ll]^{f}\\}$

There is a well-known inductive solution to the problem given by the pseudocode below. In this solution we make use of the fact that the given problem is symmetrical with respect to all three poles. Thus it is undesirable to name the individual poles. Instead we visualize the poles as being arranged in a circle; the problem is to move the tower of disks from one pole to the next pole in a speciﬁed direction around the circle. The code deﬁnes $H_n.d$ to be a sequence of pairs $(k, d)$ where n is the number of disks, $k$ is a disk number and $d$ are directions. Disks are numbered from $0$ onwards, disk $0$ being the smallest. Directions are boolean values, $true$ representing a clockwise movement and $false$ an anti-clockwise movement. The pair $(k, d)$ means move the disk numbered $k$ from its current position in the direction $d$.

excerpt from R. Backhouse, M. Fokkinga / Information Processing Letters 77 (2001) 71–76

So, here, I will have a diagram like that, $b$ type stands for $Bool$ and $i$ type for $Integer$:
$\xymatrix@!=2.8cm {b \times i \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & 1 + (b \times i) \times~[b \times i] \times~[b \times i] \ar[d]^{id + id \times~[(h)] \times~[(h)]}\\BTree~(i \times b) \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + (i \times b) \times~BTree~(i \times b) \times~BTree~(i \times b) \ar@/^{1cm}/[ll]^{in} \ar[d]^{id + id \times~(|f|) \times~(|f|)}\\[i \times b] & & 1 + (i \times b) \times~[i \times b] \times~[a] \ar[ll]^{f}\\}$

I’m going to show all the solution here, because the description of the problem is in this quote, and in the paper:

hanoi = hyloBTree f h

f = either (const []) join
where join(x,(l,r))=l++[x]++r

h(d,0) = Left ()
h(d,n+1) = Right ((n,d),((not d,n),(not d,n)))


And here it is, all the code you need to run this example:

inBTree :: Either () (b,(BTree b,BTree b)) -> BTree b
inBTree = either (const Empty) Node

outBTree :: BTree a -> Either () (a,(BTree a,BTree a))
outBTree Empty              = Left ()
outBTree (Node (a,(t1,t2))) = Right(a,(t1,t2))

baseBTree f g = id -|- (f >< g))

cataBTree g = g . (recBTree (cataBTree g)) . outBTree

anaBTree g = inBTree . (recBTree (anaBTree g) ) . g

hyloBTree h g = cataBTree h . anaBTree g

recBTree f = baseBTree id f


## Outroduction

Maybe in the future I will talk more about that subject.

9 04 2009

If you miss something in this post, I suggest you to start in Catamorphisms and Anamorphisms.

A Hylomorphism is just the composition of one catamorphism and then one anamorphism.
$hylo~f~h~=~cata~f~\circ~ana~h$, replacing that by the proper notation we have: $[|f,h|]~=~(|f|)~\circ~[(h)]$

In this post I will use the structure of a binary tree:

data BTree a = Empty | Node(a, (BTree a, BTree a))


I will use the tuples to don’t have to write uncurry’s. As I will show you, when we say that we are making a hylomorphism on a particular data type $T$, what we are trying to say is that the intermediate structure of our combination of catamorphism and anamorphism is that data type $T$. This is the structure throw our morphism will communicate with each other.

## Anamorphism

So, here I will solve the Quicksort algorithm with a hylomorphism over $BTree$.

The intermediate structure being a $BTree$ doesn’t mean that my function will receive $BTree$. My $qSort$ function works over lists. So the first thing to do, is draw the respective anamorphism from $[a]$ to $BTree~a$:

$\xymatrix@!=4.7cm {[a] \ar[r]^h \ar[d]^{[(h)]} & 1 + a \times~[a] \times~[a] \ar[d]^{id + id \times~[(h)] \times~[(h)]}\\BTree~a & 1 + a \times~BTree~a \times~BTree~a \ar[l]^{in} \\}$

My strategy here is to do all the work in the anamorphism, so, I need a function $h$ with type:
$h : [a] \rightarrow 1 + a \times [a] \times [a]$, or in Haskell $h :: [a] \rightarrow Either () (a, ([a], [a]))$

That function is $qsep$:

qsep :: [a] -> Either () (a, ([a], [a]))
qsep []    = Left ()
qsep (h:t) = Right (h,(s,l))
where (s,l) = part (<h) t

part:: (a -> Bool) -> [a] -> ([a], [a])
part p []                = ([],[])
part p (h:t) | p h       = let (s,l) = part p t in (h:s,l)
| otherwise = let (s,l) = part p t in (s,h:l)


This code is very simple, in $qsep$ I chose a pivotal element (first one), and filter the bigger to one side, and the other ones to the other, just like the algorithm. The function that do all that job is $part$, it process all the list finding the elements that satisfy the condition $p$, to put them in the left side of the tuple, and the others into the right side.

This function by it self don’t do almost anything, it is only a simple part of the algorithm.

## Catamorphism

Next step is to see the diagram for catamorphisms from $BTree~a$ to $[a]$:

$\xymatrix@!=4.7cm {BTree~a \ar[d]^{(|f|)} \ar[r]^{out} & 1 + a \times~BTree~a \times~BTree~a \ar[d]^{id + id \times~(|f|) \times~(|f|)}\\[a] & 1 + a \times~[a] \times~[a] \ar[l]^{f}\\}$

As I said before, the heavy duty is on the side of the anamorphism, so here, the catamorphism will be very very simple. In fact it is.

inord :: Either a (a, ([a], [a])) -> [a]
inord = either (const []) join
where join(x,(l,r))=l++[x]++r


That right! The only thing that the catamorphism do is a inorder passage over the structures $a + a \times [a] \times [a]$, which is very simple, as as shown by the code.

## Hylomorphism

The first thing is to draw the diagram, now for the hylomorphism, the composition of the cata with the ana:

$\xymatrix@!=2.7cm {[a] \ar@/_{1.8cm}/[dd]^{[|f,h|]} \ar[rr]^{h} \ar[d]^{[(h)]} & & 1 + a \times~[a] \times~[a] \ar[d]^{id + id \times~[(h)] \times~[(h)]}\\BTree~a \ar[d]^{(|f|)} \ar@/^{1cm}/[rr]^{out} & \cong & 1 + a \times~BTree~a \times~BTree~a \ar@/^{1cm}/[ll]^{in} \ar[d]^{id + id \times~(|f|) \times~(|f|)}\\[a] & & 1 + a \times~[a] \times~[a] \ar[ll]^{f}\\}$

Once having made the two most important parts of the function (the ana and cata), the hylo is very simple to do. You just have to make a function $hyloBTree$:

hyloBTree h g = cataBTree h . anaBTree g


And our function $qSort$ bacame:

qSort :: Ord a => [a] -> [a]
qSort = hyloBTree inord qsep


And that’s it, now I’m going to show you the all code that you need to put all the things together and working.

inBTree :: Either () (b,(BTree b,BTree b)) -> BTree b
inBTree = either (const Empty) Node

outBTree :: BTree a -> Either () (a,(BTree a,BTree a))
outBTree Empty              = Left ()
outBTree (Node (a,(t1,t2))) = Right(a,(t1,t2))

baseBTree f g = id -|- (f >< g))

cataBTree g = g . (recBTree (cataBTree g)) . outBTree

anaBTree g = inBTree . (recBTree (anaBTree g) ) . g

hyloBTree h g = cataBTree h . anaBTree g

recBTree f = baseBTree id f


## Outroduction

If you need more explanations feel free to contact me.

## The Umbilical Brothers

9 04 2009

The umbilical brothers is a group of humor that combine mime with ordinary dialog and vocal sound effects.